Это дополнительный вопрос для реализации двумерной бикубической интерполяции в Matlab. Пока я работаю над проектированием нейронной сети, я хочу сравнить эффекты между использованием заполнения и использованием линейной / нелинейной интерполяции на нескольких выходах сверточных слоев в скрытых слоях. Из-за бикубической интерполяции не содержится в Method
варианты resize2dLayer а также dlresize, Я пытаюсь перенести алгоритм двумерной бикубической интерполяции в Модель Функция. Другими словами, операция изменения размера с бикубической интерполяцией может выполняться в процессе обратного распространения.
Экспериментальная реализация
dlBicubicInterpolation
реализация функции:function [output] = dlBicubicInterpolation(dlArray ,newSize) Ndim = size(size(dlArray), 2); if Ndim == 2 output = BicubicInterpolation(dlArray, newSize); return; end if Ndim == 3 output = dlarray(zeros([newSize size(dlArray, 3)]), dims(dlArray)); for i = 1:ize(dlArray, 3) output(:, :, i) = BicubicInterpolation(dlArray(:, :, i), newSize); end return; end if Ndim == 4 output = dlarray(zeros([newSize size(dlArray, 3) size(dlArray, 4)]), dims(dlArray)); for i = 1:size(dlArray, 3) for j = 1:size(dlArray, 4) output(:, :, i, j) = BicubicInterpolation(dlArray(:, :, i, j), newSize); end end return; end error("Unsupported case!"); end
Другие используемые функции:
function [output] = BicubicInterpolation(input, newSize) originSize = size(input); newSizeX = newSize(1); newSizeY = newSize(2); inputDims = dims(input); output = dlarray(zeros([8 8]), inputDims(1:2)); ratiox = originSize(1) / newSizeX; ratioy = originSize(2) / newSizeY; for y = 0:newSizeY - 1 for x = 0:newSizeX - 1 xMappingToOrigin = x * ratiox; yMappingToOrigin = y * ratioy; xMappingToOriginFloor = floor(xMappingToOrigin); yMappingToOriginFloor = floor(yMappingToOrigin); xMappingToOriginFrac = xMappingToOrigin - xMappingToOriginFloor; yMappingToOriginFrac = yMappingToOrigin - yMappingToOriginFloor; ndata = zeros(4, 4); for ndatay = -1:2 for ndatax = -1:2 ndata(ndatax + 2, ndatay + 2) = input( ... clip(xMappingToOriginFloor + ndatax, 0, originSize(1) - 1) + 1, ... clip(yMappingToOriginFloor + ndatay, 0, originSize(2) - 1) + 1); end end output(x + 1, y + 1) = BicubicPolate(ndata, xMappingToOriginFrac, yMappingToOriginFrac); end end end function [output] = clip(input, lowerbound, upperbound) if (input > upperbound) output = upperbound; return; end if (input < lowerbound) output = lowerbound; return; end output = input; end function [output] = BicubicPolate(ndata, fracx, fracy) x1 = CubicPolate( ndata(1,1), ndata(2,1), ndata(3,1), ndata(4,1), fracx ); x2 = CubicPolate( ndata(1,2), ndata(2,2), ndata(3,2), ndata(4,2), fracx ); x3 = CubicPolate( ndata(1,3), ndata(2,3), ndata(3,3), ndata(4,3), fracx ); x4 = CubicPolate( ndata(1,4), ndata(2,4), ndata(3,4), ndata(4,4), fracx ); output = CubicPolate( x1, x2, x3, x4, fracy ); end function [output] = CubicPolate(v0, v1, v2, v3, fracy ) A = (v3-v2)-(v0-v1); B = (v0-v1)-A; C = v2-v0; D = v1; output = D + fracy * (C + fracy * (B + fracy * A)); end
Полный код тестирования
Ссылаясь на пример на веб-странице Обучение сети с помощью функции модели, линия dlY = dlconv(dlX,weights,bias,'Padding','same');
в первом сверточном слое был изменен на dlY = dlconv(dlX,weights,bias);
а потом dlBicubicInterpolation
функция используется для выполнения операции изменения размера dlY = dlBicubicInterpolation(dlY, [28 28]);
для тестирования.
%% Load Training Data
[XTrain,YTrain,anglesTrain] = digitTrain4DArrayData;
dsXTrain = arrayDatastore(XTrain,'IterationDimension',4);
dsYTrain = arrayDatastore(YTrain);
dsAnglesTrain = arrayDatastore(anglesTrain);
dsTrain = combine(dsXTrain,dsYTrain,dsAnglesTrain);
classNames = categories(YTrain);
numClasses = numel(classNames);
numResponses = size(anglesTrain,2);
numObservations = numel(YTrain);
%%
% View some images from the training data.
idx = randperm(numObservations,64);
I = imtile(XTrain(:,:,:,idx));
figure
imshow(I)
%% Define Deep Learning Model
% Define the following network that predicts both labels and angles of rotation.
%%
% Define and Initialize Model Parameters and State
filterSize = [5 5];
numChannels = 1;
numFilters = 16;
sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;
parameters.conv1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv1.Bias = initializeZeros([numFilters 1]);
%%
% Initialize the parameters and state for the first batch normalization layer.
parameters.batchnorm1.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm1.Scale = initializeOnes([numFilters 1]);
state.batchnorm1.TrainedMean = zeros(numFilters,1,'single');
state.batchnorm1.TrainedVariance = ones(numFilters,1,'single');
%%
% Initialize the parameters for the second convolutional layer.
filterSize = [3 3];
numChannels = 16;
numFilters = 32;
sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;
parameters.conv2.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv2.Bias = initializeZeros([numFilters 1]);
%%
% Initialize the parameters and state for the second batch normalization layer.
parameters.batchnorm2.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm2.Scale = initializeOnes([numFilters 1]);
state.batchnorm2.TrainedMean = zeros(numFilters,1,'single');
state.batchnorm2.TrainedVariance = ones(numFilters,1,'single');
%%
% Initialize the parameters for the third convolutional layer.
filterSize = [3 3];
numChannels = 32;
numFilters = 32;
sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;
parameters.conv3.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv3.Bias = initializeZeros([numFilters 1]);
%%
% Initialize the parameters and state for the third batch normalization layer.
parameters.batchnorm3.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm3.Scale = initializeOnes([numFilters 1]);
state.batchnorm3.TrainedMean = zeros(numFilters,1,'single');
state.batchnorm3.TrainedVariance = ones(numFilters,1,'single');
%%
% Initialize the parameters for the convolutional layer in the skip connection.
filterSize = [1 1];
numChannels = 16;
numFilters = 32;
sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;
parameters.convSkip.Weights = initializeGlorot(sz,numOut,numIn);
parameters.convSkip.Bias = initializeZeros([numFilters 1]);
%%
% Initialize the parameters and state for the batch normalization layer in the
% skip connection.
parameters.batchnormSkip.Offset = initializeZeros([numFilters 1]);
parameters.batchnormSkip.Scale = initializeOnes([numFilters 1]);
state.batchnormSkip.TrainedMean = zeros([numFilters 1],'single');
state.batchnormSkip.TrainedVariance = ones([numFilters 1],'single');
%%
% Initialize the parameters for the fully connected layer corresponding to the
% classification output.
sz = [numClasses 6272];
numOut = numClasses;
numIn = 6272;
parameters.fc1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc1.Bias = initializeZeros([numClasses 1]);
%%
% Initialize the parameters for the fully connected layer corresponding to the
% regression output.
sz = [numResponses 6272];
numOut = numResponses;
numIn = 6272;
parameters.fc2.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc2.Bias = initializeZeros([numResponses 1]);
%%
% View the struct of the parameters.
parameters
%%
% View the parameters for the "conv1" operation.
parameters.conv1
%%
% View the struct of the state.
state
%%
state.batchnorm1
numEpochs = 20;
miniBatchSize = 128;
%%
plots = "training-progress";
%% Train Model
mbq = minibatchqueue(dsTrain,...
'MiniBatchSize',miniBatchSize,...
'MiniBatchFcn', @preprocessMiniBatch,...
'MiniBatchFormat',{'SSCB','',''});
%%
% Initialize parameters for Adam.
trailingAvg = [];
trailingAvgSq = [];
%%
% Initialize the training progress plot.
if plots == "training-progress"
figure
lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")
grid on
end
%%
% Train the model.
iteration = 0;
start = tic;
% Loop over epochs.
for epoch = 1:numEpochs
% Shuffle data.
shuffle(mbq)
% Loop over mini-batches
while hasdata(mbq)
iteration = iteration + 1;
[dlX,dlY1,dlY2] = next(mbq);
% Evaluate the model gradients, state, and loss using dlfeval and the
% modelGradients function.
[gradients,state,loss] = dlfeval(@modelGradients, parameters, dlX, dlY1, dlY2, state);
% Update the network parameters using the Adam optimizer.
[parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
trailingAvg,trailingAvgSq,iteration);
% Display the training progress.
if plots == "training-progress"
D = duration(0,0,toc(start),'Format','hh:mm:ss');
addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
title("Epoch: " + epoch + ", Elapsed: " + string(D))
drawnow
end
end
end
%% Test Model
[XTest,YTest,anglesTest] = digitTest4DArrayData;
dsXTest = arrayDatastore(XTest,'IterationDimension',4);
dsYTest = arrayDatastore(YTest);
dsAnglesTest = arrayDatastore(anglesTest);
dsTest = combine(dsXTest,dsYTest,dsAnglesTest);
mbqTest = minibatchqueue(dsTest,...
'MiniBatchSize',miniBatchSize,...
'MiniBatchFcn', @preprocessMiniBatch,...
'MiniBatchFormat',{'SSCB','',''});
%%
doTraining = false;
classesPredictions = [];
anglesPredictions = [];
classCorr = [];
angleDiff = [];
% Loop over mini-batches.
while hasdata(mbqTest)
% Read mini-batch of data.
[dlXTest,dlY1Test,dlY2Test] = next(mbqTest);
% Make predictions using the predict function.
[dlY1Pred,dlY2Pred] = model(parameters,dlXTest,doTraining,state);
% Determine predicted classes.
Y1PredBatch = onehotdecode(dlY1Pred,classNames,1);
classesPredictions = [classesPredictions Y1PredBatch];
% Dermine predicted angles
Y2PredBatch = extractdata(dlY2Pred);
anglesPredictions = [anglesPredictions Y2PredBatch];
% Compare predicted and true classes
Y1Test = onehotdecode(dlY1Test,classNames,1);
classCorr = [classCorr Y1PredBatch == Y1Test];
% Compare predicted and true angles
angleDiffBatch = Y2PredBatch - dlY2Test;
angleDiff = [angleDiff extractdata(gather(angleDiffBatch))];
end
%%
accuracy = mean(classCorr)
%%
angleRMSE = sqrt(mean(angleDiff.^2))
%%
idx = randperm(size(XTest,4),9);
figure
for i = 1:9
subplot(3,3,i)
I = XTest(:,:,:,idx(i));
imshow(I)
hold on
sz = size(I,1);
offset = sz/2;
thetaPred = anglesPredictions(idx(i));
plot(offset*[1-tand(thetaPred) 1+tand(thetaPred)],[sz 0],'r--')
thetaValidation = anglesTest(idx(i));
plot(offset*[1-tand(thetaValidation) 1+tand(thetaValidation)],[sz 0],'g--')
hold off
label = string(classesPredictions(idx(i)));
title("Label: " + label)
end
%% Model Function
function [dlY1,dlY2,state] = model(parameters,dlX,doTraining,state)
% Convolution
weights = parameters.conv1.Weights;
bias = parameters.conv1.Bias;
dlY = dlconv(dlX,weights,bias);
dlY = dlBicubicInterpolation(dlY, [28 28]);
% Batch normalization, ReLU
offset = parameters.batchnorm1.Offset;
scale = parameters.batchnorm1.Scale;
trainedMean = state.batchnorm1.TrainedMean;
trainedVariance = state.batchnorm1.TrainedVariance;
if doTraining
[dlY,trainedMean,trainedVariance] = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
% Update state
state.batchnorm1.TrainedMean = trainedMean;
state.batchnorm1.TrainedVariance = trainedVariance;
else
dlY = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
end
dlY = relu(dlY);
% Convolution, batch normalization (Skip connection)
weights = parameters.convSkip.Weights;
bias = parameters.convSkip.Bias;
dlYSkip = dlconv(dlY,weights,bias,'Stride',2);
offset = parameters.batchnormSkip.Offset;
scale = parameters.batchnormSkip.Scale;
trainedMean = state.batchnormSkip.TrainedMean;
trainedVariance = state.batchnormSkip.TrainedVariance;
if doTraining
[dlYSkip,trainedMean,trainedVariance] = batchnorm(dlYSkip,offset,scale,trainedMean,trainedVariance);
% Update state
state.batchnormSkip.TrainedMean = trainedMean;
state.batchnormSkip.TrainedVariance = trainedVariance;
else
dlYSkip = batchnorm(dlYSkip,offset,scale,trainedMean,trainedVariance);
end
% Convolution
weights = parameters.conv2.Weights;
bias = parameters.conv2.Bias;
dlY = dlconv(dlY,weights,bias,'Padding','same','Stride',2);
% Batch normalization, ReLU
offset = parameters.batchnorm2.Offset;
scale = parameters.batchnorm2.Scale;
trainedMean = state.batchnorm2.TrainedMean;
trainedVariance = state.batchnorm2.TrainedVariance;
if doTraining
[dlY,trainedMean,trainedVariance] = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
% Update state
state.batchnorm2.TrainedMean = trainedMean;
state.batchnorm2.TrainedVariance = trainedVariance;
else
dlY = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
end
dlY = relu(dlY);
% Convolution
weights = parameters.conv3.Weights;
bias = parameters.conv3.Bias;
dlY = dlconv(dlY,weights,bias,'Padding','same');
% Batch normalization
offset = parameters.batchnorm3.Offset;
scale = parameters.batchnorm3.Scale;
trainedMean = state.batchnorm3.TrainedMean;
trainedVariance = state.batchnorm3.TrainedVariance;
if doTraining
[dlY,trainedMean,trainedVariance] = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
% Update state
state.batchnorm3.TrainedMean = trainedMean;
state.batchnorm3.TrainedVariance = trainedVariance;
else
dlY = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
end
dlY = dlYSkip + dlY;
dlY = relu(dlY);
weights = parameters.fc1.Weights;
bias = parameters.fc1.Bias;
dlY1 = fullyconnect(dlY,weights,bias);
dlY1 = softmax(dlY1);
weights = parameters.fc2.Weights;
bias = parameters.fc2.Bias;
dlY2 = fullyconnect(dlY,weights,bias);
end
%% Model Gradients Function
function [gradients,state,loss] = modelGradients(parameters,dlX,T1,T2,state)
doTraining = true;
[dlY1,dlY2,state] = model(parameters,dlX,doTraining,state);
lossLabels = crossentropy(dlY1,T1);
lossAngles = mse(dlY2,T2);
loss = lossLabels + 0.1*lossAngles;
gradients = dlgradient(loss,parameters);
end
%% Mini-Batch Preprocessing Function
function [X,Y,angle] = preprocessMiniBatch(XCell,YCell,angleCell)
X = cat(4,XCell{:});
Y = cat(2,YCell{:});
angle = cat(2,angleCell{:});
Y = onehotencode(Y,1);
end
%%
function [output] = dlBicubicInterpolation(dlArray ,newSize)
Ndim = size(size(dlArray), 2);
if Ndim == 2
output = BicubicInterpolation(dlArray, newSize);
return;
end
if Ndim == 3
output = dlarray(zeros([newSize size(dlArray, 3)]), dims(dlArray));
for i = 1:ize(dlArray, 3)
output(:, :, i) = BicubicInterpolation(dlArray(:, :, i), newSize);
end
return;
end
if Ndim == 4
output = dlarray(zeros([newSize size(dlArray, 3) size(dlArray, 4)]), dims(dlArray));
for i = 1:size(dlArray, 3)
for j = 1:size(dlArray, 4)
output(:, :, i, j) = BicubicInterpolation(dlArray(:, :, i, j), newSize);
end
end
return;
end
error("Unsupported case!");
end
function [output] = BicubicInterpolation(input, newSize)
originSize = size(input);
newSizeX = newSize(1);
newSizeY = newSize(2);
inputDims = dims(input);
output = dlarray(zeros([8 8]), inputDims(1:2));
ratiox = originSize(1) / newSizeX;
ratioy = originSize(2) / newSizeY;
for y = 0:newSizeY - 1
for x = 0:newSizeX - 1
xMappingToOrigin = x * ratiox;
yMappingToOrigin = y * ratioy;
xMappingToOriginFloor = floor(xMappingToOrigin);
yMappingToOriginFloor = floor(yMappingToOrigin);
xMappingToOriginFrac = xMappingToOrigin - xMappingToOriginFloor;
yMappingToOriginFrac = yMappingToOrigin - yMappingToOriginFloor;
ndata = zeros(4, 4);
for ndatay = -1:2
for ndatax = -1:2
ndata(ndatax + 2, ndatay + 2) = input( ...
clip(xMappingToOriginFloor + ndatax, 0, originSize(1) - 1) + 1, ...
clip(yMappingToOriginFloor + ndatay, 0, originSize(2) - 1) + 1);
end
end
output(x + 1, y + 1) = BicubicPolate(ndata, xMappingToOriginFrac, yMappingToOriginFrac);
end
end
end
function [output] = clip(input, lowerbound, upperbound)
if (input > upperbound)
output = upperbound;
return;
end
if (input < lowerbound)
output = lowerbound;
return;
end
output = input;
end
function [output] = BicubicPolate(ndata, fracx, fracy)
x1 = CubicPolate( ndata(1,1), ndata(2,1), ndata(3,1), ndata(4,1), fracx );
x2 = CubicPolate( ndata(1,2), ndata(2,2), ndata(3,2), ndata(4,2), fracx );
x3 = CubicPolate( ndata(1,3), ndata(2,3), ndata(3,3), ndata(4,3), fracx );
x4 = CubicPolate( ndata(1,4), ndata(2,4), ndata(3,4), ndata(4,4), fracx );
output = CubicPolate( x1, x2, x3, x4, fracy );
end
function [output] = CubicPolate(v0, v1, v2, v3, fracy )
A = (v3-v2)-(v0-v1);
B = (v0-v1)-A;
C = v2-v0;
D = v1;
output = D + fracy * (C + fracy * (B + fracy * A));
end
Информация о тестовой платформе
Версия Matlab: ‘9.10.0.1684407 (R2021a) Обновление 3’
Все предложения приветствуются.
Сводная информация:
На какой вопрос это продолжение?
Реализация двумерной бикубической интерполяции в Matlab.
Какие изменения были внесены в код с момента последнего вопроса?
Я пытаюсь перенести алгоритм двумерной бикубической интерполяции в Модель Функция в этом посте.
Почему запрашивается новый обзор?
Если есть какие-то улучшения, пожалуйста, дайте мне знать.
Справка