Отладка проблемы с размерными формами в CapsNet и настройке маршрутизации

Я узнаю о CapsNet (Ссылка:Бумага) и вдохновленный этим GH. учитывая, что я пытался упростить записи в Routing алгоритма, я получаю следующие ошибки, которые я показываю его отслеживанием:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-16-437d69dc56fd> in <module>()
     35 model = CapsNet(input_shape=(28,28,1),
     36                 n_class=10,
---> 37                 routings=1)
     38 optim = keras.optimizers.Adam(learning_rate =0.0008)
     39 model.compile(optim, loss="CategoricalCrossentropy", metrics=["accuracy"])

5 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in wrapper(*args, **kwargs)
    693       except Exception as e:  # pylint:disable=broad-except
    694         if hasattr(e, 'ag_error_metadata'):
--> 695           raise e.ag_error_metadata.to_exception(e)
    696         else:
    697           raise

ValueError: in user code:

    <ipython-input-1-25beed0721a4>:53 call  *
        masked = K.batch_flatten(inputs * K.expand_dims(mask, -1))
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/math_ops.py:1250 binary_op_wrapper
        raise e
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/math_ops.py:1234 binary_op_wrapper
        return func(x, y, name=name)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/math_ops.py:1575 _mul_dispatch
        return multiply(x, y, name=name)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:206 wrapper
        return target(*args, **kwargs)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/math_ops.py:530 multiply
        return gen_math_ops.mul(x, y, name)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/gen_math_ops.py:6250 mul
        "Mul", x=x, y=y, name=name)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/op_def_library.py:750 _apply_op_helper
        attrs=attr_protos, op_def=op_def)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py:601 _create_op_internal
        compute_device)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:3565 _create_op_internal
        op_def=op_def)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:2042 __init__
        control_input_ops, op_def)
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:1883 _create_c_op
        raise ValueError(str(e))

    ValueError: Dimensions must be equal, but are 12800 and 10 for '{{node mask_4/mul}} = Mul[T=DT_FLOAT](Placeholder, mask_4/ExpandDims)' with input shapes: [?,10,10,12800,16], [?,10,1].

Я использовал упрощенный код:

import keras.backend as K
import tensorflow as tf
from keras import initializers, layers


class Length(layers.Layer):
    """
    Compute the length of vectors. This is used to compute a Tensor that has the same shape with y_true in margin_loss.
    Using this layer as model's output can directly predict labels by using `y_pred = np.argmax(model.predict(x), 1)`
    inputs: shape=[None, num_vectors, dim_vector]
    output: shape=[None, num_vectors]
    """
    def call(self, inputs, **kwargs):
        return K.sqrt(K.sum(K.square(inputs), -1) + K.epsilon())

    def compute_output_shape(self, input_shape):
        return input_shape[:-1]

    def get_config(self):
        config = super(Length, self).get_config()
        return config


class Mask(layers.Layer):
    """
    Mask a Tensor with shape=[None, num_capsule, dim_vector] either by the capsule with max length or by an additional input mask. Except for the max-length capsule (or specified capsule), all vectors are masked to zeros. Then flatten the
    masked Tensor.
    For example:
        ```
        x = keras.layers.Input(shape=[8, 3, 2])  # batch_size=8, each sample contains 3 capsules with dim_vector=2
        y = keras.layers.Input(shape=[8, 3])  # True labels. 8 samples, 3 classes, one-hot coding.
        out = Mask()(x)  # out.shape=[8, 6]
        # or
        out2 = Mask()([x, y])  # out2.shape=[8,6]. Masked with true labels y. Of course y can also be manipulated.
        ```
    """
    def call(self, inputs, **kwargs):
        if type(inputs) is list:  # true label is provided with shape = [None, n_classes], i.e. one-hot code.
            assert len(inputs) == 2
            inputs, mask = inputs
        else:  # if no true label, mask by the max length of capsules. Mainly used for prediction
            # compute lengths of capsules
            x = K.sqrt(K.sum(K.square(inputs), -1))
            # generate the mask which is a one-hot code.
            # mask.shape=[None, n_classes]=[None, num_capsule]
            mask = K.one_hot(indices=K.argmax(x, 1), num_classes=x.get_shape().as_list()[1])

        # inputs.shape=[None, num_capsule, dim_capsule]
        # mask.shape=[None, num_capsule]
        # masked.shape=[None, num_capsule * dim_capsule]
        masked = K.batch_flatten(inputs * K.expand_dims(mask, -1))
        return masked

    def compute_output_shape(self, input_shape):
        if type(input_shape[0]) is tuple:  # true label provided
            return tuple([None, input_shape[0][1] * input_shape[0][2]])
        else:  # no true label provided
            return tuple([None, input_shape[1] * input_shape[2]])

    def get_config(self):
        config = super(Mask, self).get_config()
        return config


def squash(vectors, axis=-1):
    """
    The non-linear activation used in Capsule. It drives the length of a large vector to near 1 and small vector to 0
    :param vectors: some vectors to be squashed, N-dim tensor
    :param axis: the axis to squash
    :return: a Tensor with same shape as input vectors
    """
    s_squared_norm = K.sum(K.square(vectors), axis, keepdims=True)
    scale = s_squared_norm / (1 + s_squared_norm) / K.sqrt(s_squared_norm + K.epsilon())
    return scale * vectors


class CapsuleLayer(layers.Layer):
    """
    The capsule layer. It is similar to Dense layer. Dense layer has `in_num` inputs, each is a scalar, the output of the 
    neuron from the former layer, and it has `out_num` output neurons. CapsuleLayer just expand the output of the neuron
    from scalar to vector. So its input shape = [None, input_num_capsule, input_dim_capsule] and output shape = 
    [None, num_capsule, dim_capsule]. For Dense Layer, input_dim_capsule = dim_capsule = 1.
    
    :param num_capsule: number of capsules in this layer
    :param dim_capsule: dimension of the output vectors of the capsules in this layer
    :param routings: number of iterations for the routing algorithm
    """
    def __init__(self, num_capsule, dim_capsule, routings=3,
                 kernel_initializer="glorot_uniform",
                 **kwargs):
        super(CapsuleLayer, self).__init__(**kwargs)
        self.num_capsule = num_capsule
        self.dim_capsule = dim_capsule
        self.routings = routings
        self.kernel_initializer = initializers.get(kernel_initializer)

    def build(self, input_shape):
        assert len(input_shape) >= 3, "The input Tensor should have shape=[None, input_num_capsule, input_dim_capsule]"
        self.input_num_capsule = input_shape[1]
        self.input_dim_capsule = input_shape[2]

        # Transform matrix
        self.W = self.add_weight(shape=[self.num_capsule, self.input_num_capsule,
                                        self.dim_capsule, self.input_dim_capsule],
                                 initializer=self.kernel_initializer,
                                 name="W")

        self.built = True

    def call(self, inputs, training=None):
        # inputs.shape=[None, input_num_capsule, input_dim_capsule]
        # inputs_expand.shape=[None, 1, input_num_capsule, input_dim_capsule]
        inputs_expand = K.expand_dims(inputs, 1)

        # Replicate num_capsule dimension to prepare being multiplied by W
        # inputs_tiled.shape=[None, num_capsule, input_num_capsule, input_dim_capsule]
        inputs_tiled = K.tile(inputs_expand, [1, self.num_capsule, 1, 1])

        # Compute `inputs * W` by scanning inputs_tiled on dimension 0.
        # x.shape=[num_capsule, input_num_capsule, input_dim_capsule]
        # W.shape=[num_capsule, input_num_capsule, dim_capsule, input_dim_capsule]
        # Regard the first two dimensions as `batch` dimension,
        # then matmul: [input_dim_capsule] x [dim_capsule, input_dim_capsule]^T -> [dim_capsule].
        # inputs_hat.shape = [None, num_capsule, input_num_capsule, dim_capsule]
        inputs_hat = K.map_fn(lambda x: K.batch_dot(x, self.W, [2, 3]), elems=inputs_tiled)

        # Begin: Routing algorithm ---------------------------------------------------------------------#
        # The prior for coupling coefficient, initialized as zeros.
        # b.shape = [None, self.num_capsule, self.input_num_capsule].
        b = tf.zeros(shape=[K.shape(inputs_hat)[0], self.num_capsule, self.input_num_capsule])

        assert self.routings > 0, 'The routings should be > 0.'
        for i in range(self.routings):
            # c.shape=[batch_size, num_capsule, input_num_capsule]
            c = tf.nn.softmax(b)

            # c.shape =  [batch_size, num_capsule, input_num_capsule]
            # inputs_hat.shape=[None, num_capsule, input_num_capsule, dim_capsule]
            # The first two dimensions as `batch` dimension,
            # then matmal: [input_num_capsule] x [input_num_capsule, dim_capsule] -> [dim_capsule].
            # outputs.shape=[None, num_capsule, dim_capsule]
            outputs = squash(K.batch_dot(c, inputs_hat, [2, 2]))  # [None, 10, 16]

            if i < self.routings - 1:
                # outputs.shape =  [None, num_capsule, dim_capsule]
                # inputs_hat.shape=[None, num_capsule, input_num_capsule, dim_capsule]
                # The first two dimensions as `batch` dimension,
                # then matmal: [dim_capsule] x [input_num_capsule, dim_capsule]^T -> [input_num_capsule].
                # b.shape=[batch_size, num_capsule, input_num_capsule]
                #problem
                b += K.batch_dot(outputs, inputs_hat, [2, 3])
        # End: Routing algorithm -----------------------------------------------------------------------#

        return outputs

    def compute_output_shape(self, input_shape):
        return tuple([None, self.num_capsule, self.dim_capsule])

    def get_config(self):
        config = {
            'num_capsule': self.num_capsule,
            'dim_capsule': self.dim_capsule,
            'routings': self.routings
        }
        base_config = super(CapsuleLayer, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


def PrimaryCap(inputs, dim_capsule, n_channels, kernel_size, strides, padding):
    """
    Apply Conv2D `n_channels` times and concatenate all capsules
    :param inputs: 4D tensor, shape=[None, width, height, channels]
    :param dim_capsule: the dim of the output vector of capsule
    :param n_channels: the number of types of capsules
    :return: output tensor, shape=[None, num_capsule, dim_capsule]
    """
    output = layers.Conv2D(filters=dim_capsule*n_channels, kernel_size=kernel_size, strides=strides, padding=padding,
                           name="primarycap_conv2d")(inputs)
    outputs = layers.Reshape(target_shape=[-1, dim_capsule], name="primarycap_reshape")(inputs)
    return layers.Lambda(squash, name="primarycap_squash")(outputs)


"""
# The following is another way to implement primary capsule layer. This is much slower.
# Apply Conv2D `n_channels` times and concatenate all capsules
def PrimaryCap(inputs, dim_capsule, n_channels, kernel_size, strides, padding):
    outputs = []
    for _ in range(n_channels):
        output = layers.Conv2D(filters=dim_capsule, kernel_size=kernel_size, strides=strides, padding=padding)(inputs)
        outputs.append(layers.Reshape([output.get_shape().as_list()[1] ** 2, dim_capsule])(output))
    outputs = layers.Concatenate(axis=1)(outputs)
    return layers.Lambda(squash)(outputs)
"""

#model_1
def CapsNet(input_shape, n_class, routings):
    """
    A Capsule Network on MNIST.
    :param input_shape: data shape, 3d, [width, height, channels]
    :param n_class: number of classes
    :param routings: number of routing iterations
    :return: Two Keras Models, the first one used for training, and the second one for evaluation.
            `eval_model` can also be used for training.
    """
    x = layers.Input(shape=input_shape)

    # Layer 1: Just a conventional Conv2D layer
    conv1 = layers.Conv2D(filters=256, kernel_size=9, strides=1, padding='valid', activation='relu', name="conv1")(x)

    # Layer 2: Conv2D layer with `squash` activation, then reshape to [None, num_capsule, dim_capsule]
    primarycaps = PrimaryCap(conv1, dim_capsule=8, n_channels=32, kernel_size=9, strides=2, padding='valid')

    # Layer 3: Capsule layer. Routing algorithm works here.
    digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=routings,
                             name="digitcaps")(primarycaps)
    out_caps = Length(name="capsnet")(digitcaps)
    y = layers.Input(shape=(n_class,))
    masked_by_y = Mask()([digitcaps, y])  # The true label is used to mask the output of capsule layer. For training
    masked = Mask()(digitcaps)  # Mask using the capsule with maximal length. For prediction
    decoder = models.Sequential(name="decoder")
    decoder.add(layers.Dense(512, activation='relu', input_dim=16*n_class))
    decoder.add(layers.Dense(1024, activation='relu'))
    decoder.add(layers.Dense(np.prod(input_shape), activation='sigmoid'))
    decoder.add(layers.Reshape(target_shape=input_shape, name="out_recon"))

    # Models for training and evaluation (prediction)
    train_model = models.Model([x, y], [out_caps, decoder(masked_by_y)])
    return train_model
model = CapsNet(input_shape=(28,28,1),
                n_class=10,
                routings=1)
optim = keras.optimizers.Adam(learning_rate =0.0008)
model.compile(optim, loss="CategoricalCrossentropy", metrics=["accuracy"])
def step_decay(epoch):
     
     initAlpha = 0.0008
     factor = .86
     dropEvery = 24
     alpha = initAlpha * (factor ** np.floor((1 + epoch) / dropEvery))
     return float(alpha)
batch_size =32
TrainSteps = len(X_train) / batch_size     
ValSteps   = len(y_train) / batch_size

Насколько мне известно, когда я вызываю функцию CapsNet() с участием routings=3 Я столкнусь с вышеупомянутой ошибкой, но как только я установлю ее на routings=1, он работает, но я думаю, что упускаю преимущество в маршрутизации, которое заключается в поворотах и ​​разработке функций в капсулах. К сожалению, до сих пор я не мог отладить проблему.

Любая помощь / обновление будет оценено.

0

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *